Jak cię złapią, to znaczy, że oszukiwałeś. Jak nie, to znaczy, że posłużyłeś się odpowiednią taktyką.
Tylko wówczas funkcja
prawdopodobieństwa umożliwi obliczenie prawdopodobnego wyniku nowego pomiaru. Wynik pomiaru zawsze jest wyrażony w języku fizyki klasycznej. Toteż istnieją trzy etapy teoretycznej interpretacji doświadczenia: 1) opisanie sytuacji początkowej za pomocą funkcji prawdopodobieństwa; 2) obliczenie zmian tej funkcji w czasie; 3) dokonanie nowego pomiaru, którego wynik może być obliczony na podstawie funkcji prawdopodobieństwa. Na pierwszym etapie koniecznym warunkiem jest spełnianie się relacji nieoznaczoności. Drugiego etapu nie można opisać za pomocą pojęć klasycznych; w związku z tym nie można powiedzieć, co się dzieje z układem między pierwszą obserwacją a późniejszym pomiarem. Dopiero na trzecim etapie powracamy od “tego, co możliwe", do “tego, co rzeczy- wiste". Rozpatrzmy obecnie dokładniej te trzy etapy, odwołując się do prostego eksperymentu myślowego. Powiedzieliśmy, że atom składa się z jądra oraz z obracających się wokół niego elektronów i że pojęcie orbity elektronowej budzi wątpliwości. Mógłby ktoś powiedzieć, że przynajmniej w zasadzie powinno być możliwe obserwowanie elektronu poruszającego się po orbicie. Gdybyśmy po prostu obserwowali atom w mikroskopie o bardzo wielkiej zdolności rozdzielczej, to ujrzelibyśmy wówczas elektron krążący po swej orbicie. Takiej zdolności rozdzielczej na pewno nie może posiadać zwykły mikroskop, ponieważ niedokładność pomiaru położenia nigdy nie może być mniejsza od długości fali świetlnej. Taką zdolność rozdzielczą mógłby jednak posiadać mikroskop, w którym wyzyskano by promienie ? [gamma], bowiem długość ich fal jest mniejsza od średnicy atomów. Mikroskopu takiego wprawdzie nie skonstruowano, nie przeszkadza to nam jednak rozważyć pewien eksperyment myślowy. Czy można - po pierwsze - przedstawić wyniki obserwacji za pomocą funkcji prawdopodobieństwa? Powiedzieliśmy poprzednio, że jest to możliwe tylko pod warunkiem, że spełniona będzie relacja nieoznaczoności. Położenie elektronu można określić z dokładnością rzędu długości fal promieni ? [gamma]. Załóżmy, że przed obserwacją elektron mógł nawet znajdować się w spoczynku. W trakcie pomiaru przynajmniej jeden kwant promieni ? [gamma] musiałby zderzyć się z elektronem, zmienić kierunek ruchu i przejść przez mikroskop. Toteż elektron musiałby zostać uderzony przez kwant, co spowodowałoby zmianę jego pędu i prędkości. Można wykazać, że nieoznaczoność tej zmiany jest taka, jakiej wymaga relacja nieoznaczoności. A więc na pierwszym etapie nie napotkalibyśmy żadnych trudności. Jednocześnie można łatwo dowieść, że obserwacja orbity elektronu jest niemożliwa. Na drugim etapie przekonujemy się, że paczka fal nie porusza się wokół jądra, lecz oddala się od atomu, ponieważ już pierwszy kwant powoduje wybicie elektronu z atomu. Jeśli długość fal promieni ? [gamma] jest znacznie mniejsza od rozmiarów atomu, to pęd kwantu świetlnego jest bez porównania większy od początkowego pędu elektronu. Toteż energia pierwszego kwantu świetlnego byłaby całkowicie wystarczająca do wybicia elektronu, z atomu. Z tego wynika, że obserwować można wyłącznie jeden punkt jego toru. Dlatego właśnie mówimy, że orbita w zwykłym sensie tego słowa - nie istnieje. W trzecim stadium kolejna obserwacja wykaże, że elektron po wybiciu z atomu oddala się od niego. Mówiąc ogólnie: nie jesteśmy w stanie opisać tego, co się dzieje między dwiema następującymi po sobie obserwacjami. Mamy oczywiście ochotę powiedzieć, że w interwale czasowym. między dwiema obserwacjami elektron musiał się jednak gdzieś znajdować i że musiał zatem opisać jakąś trajektorię lub orbitę, nawet jeśli nie można ustalić, jaka to była trajektoria. Taki argument miałby sens w fizyce klasycznej. Natomiast w teorii kwantów byłby on - jak przekonamy się później - niczym nie usprawiedliwionym nadużyciem języka. Obecnie nie rozstrzygamy kwestii, czy mamy tu do czynienia z zagadnieniem gnozeologicznym, czy też ontologicznym, to znaczy z twierdzeniem o sposobie, w jaki można mówić o mikrozjawiskach, czy też z twierdzeniem o nich samych. W każdym razie musimy zachować daleko idącą ostrożność, gdy formułujemy twierdzenia dotyczące zachowania się cząstek
|
WÄ…tki
|