Jak cię złapią, to znaczy, że oszukiwałeś. Jak nie, to znaczy, że posłużyłeś się odpowiednią taktyką.
Filozofowie nauki zwykle czerpi¹ przyk³ady do swoich analiz
z odleg³ej historii, najchêtniej z okresu pomiêdzy Kopernikiem a Newtonem, z rzadka tylko siêgaj¹c do XIX stulecia. Spoœród dwu- dziestowiecznych teorii fizycznych przedmiotem analiz dokonywa- nych przez filozofów bywa niekiedy szczególna teoria wzglêdnoœci, a ca³a reszta wspó³czesnej fizyki jest przez nich praktycznie niezau- wa¿ana. Fizycy natomiat niemal ca³kowicie ignoruj¹ prace filozofów nauki (toleruj¹c jedynie niektóre prace Poppera). Sami wprawdzie dosyæ czêsto (a nawet coraz czêœciej) chwytaj¹ za pióro, by napisaæ coœ o filozoficznych przemyœleniach "na marginesie swojej pracy", ale z kolei zawodowi filozofowie traktuj¹ wyniki tej twórczoœci co najwy¿ej jako dzie³ka populamo-naukowe, w których fizycy w sposób trywialny odkrywaj¹ rzeczy od dawna znane filozofom. W tych wzajemnych oskar¿eniach jest ziarno prawdy, ale myœlê, ¿e sedno zagadnienia tkwi g³êbiej. Upatrujê go w dwu historycznych proce- sach, które w dalszym ci¹gu postaram siê zidentyfikowaæ. 2. Za inicjatora pierwszego z tych procesów nale¿y uznaæ Fregego. W okresie poprzedzaj¹cym jego prace przedmiotem analiz 110 teoriopoznawczych by³y idee (Locke, Berkeley, Mili) lub w naj- lepszym razie s¹dy (Kant). Frege zainteresowa³ siê zdaniami, a za narzêdzie analizy wybra³ logikê. W ten sposób rozpocz¹³ siê w filozofii "zwrot ku jêzykowi". Autorytet Russella i Whiteheada przyczyni³ siê do utrwalenia pozycji logiki w badaniach filozoficz- nych, a potem Wittgenstein (najpierw Pierwszy, a nastêpnie Drugi, w jeszcze wiêkszym stopniu) uczyni³ z jêzyka niemal wy³¹czny temat dociekañ filozoficznych. Gdy uczestnicy i sympatycy Ko³a Wiedeñ- skiego tworzyli zrêby XX-wiecznej filozofii nauki, ju¿ prawie nie mogli nie ograniczyæ siê do logicznych analiz teorii naukowych. Dziêki temu filozofia nauki mia³a staæ siê "œcis³a" i "naukowa". Dziœ mówi siê powszechnie o tym, ¿e neopozytywistyczna filozofia nauki zosta³a przezwyciê¿ona i ¿e nie mo¿e byæ ju¿ do niej powrotu. Przynajmniej do pewnego stopnia jest to prawd¹, ale za³o¿enie, ¿e nauki empiryczne mo¿na zredukowaæ do jêzyka (w ka¿dym razie gdy idzie o ich metodologiczne analizy), pozosta³o nietkniête. Gdy Quine w swoim s³ynnym artykule rozprawia³ siê z "dwoma dogmatami empiryzmu logicznego", przyczyniaj¹c siê ostatecznie do odwrotu od neopozytywistycznych przekonañ, czyni³ to w imiê pewnej wizji jêzyka i pos³uguj¹c siê argumentami czysto jêzykowymi. Wprawdzie potem kontrowersje zapocz¹tkowane przez Kuhna zabarwi³y metodo- logiczne analizy nauki akcentami historycznymi, ale stanowi³o to co najwy¿ej stosunkowo niewielkie rozszerzenie "kontekstu lingwistycz- nego". I je¿eli dziœ mówimy o wielkiej specjalizacji i wyrafinowaniu badañ w dziedzinie filozofii nauki, to w dziewiêædziesiêciu procen- tach jest to specjalizacja i wyrafinowanie w metodach analityczno- jêzykowych, u podstaw których le¿y milcz¹ce za³o¿enie, i¿ nauki empiryczne mo¿na zredukowaæ do ich jêzyka. 3. Tymczasem jest to za³o¿enie fa³szywe. Fa³szywoœæ tê mo¿na wykazaæ na ró¿ne sposoby. Ograniczê siê tylko do jednego argu- mentu, odnosz¹cego siê do fizyki. Z koniecznoœci bêdzie to argument szkicowy, ale nawet w takiej postaci jego wymowa jest uderzaj¹ca. Fizycy, buduj¹c swoje teorie i modele, pos³uguj¹ siê jêzykiem naturalnym tylko w niewielkim stopniu. Jak wiadomo, "jêzykiem 111 fizyki jest matematyka". Ale gdy filozofowie nauki analizuj¹ teorie fizyki, nie czyni¹ tego w jêzyku matematyki, lecz mówi¹ o tych teoriach w stworzonym przez siebie metajêzyku, który wprawdzie sk³ada siê ze zwyk³ych wyrazów, ale znacznie odbiega od jêzyka potocznego (jest przyk³adem tego, co moglibyœmy nazwaæ "jêzykiem technicznym"). Istotn¹ rzecz¹ jest to, ¿e jeœli przyj¹æ naturalne za³o¿enie, i¿ bêdziemy siê pos³ugiwaæ tylko zdaniami o skoñczonej d³ugoœci, to zbiór wszystkich tego rodzaju zdañ o fizyce jest zbiorem przeliczalnym (poniewa¿ zdania o skoñczonej d³ugoœci mo¿na zawsze u³o¿yæ w porz¹dku leksykograficznym ["wed³ug alfabetu"] i ponu- merowaæ za pomoc¹ liczb naturalnych). Tymczasem do matematycz- nej struktury wszystkich bogatszych teorii fizycznych wchodzi matematyczna teoria funkcji rzeczywistych zmiennej rzeczywistej, a - jak dobrze wiadomo - zbiór takich funkcji (np. na prostej rzeczy- wiste]) jest nieprzeliczalny. A zatem struktura teorii fizycznych
|
WÄ…tki
|