Jak cię złapią, to znaczy, że oszukiwałeś. Jak nie, to znaczy, że posłużyłeś się odpowiednią taktyką.
quantlet.org/mdstat/codes/mva/MVAppexample.html (1 of 3) [10/11/2004 9:58:27 AM]
Applied Multivariate Statistical Analysis setmaskp (pind, cind) show (d, 2, 1, pind) i = 0 pmin = 1 pmax = 1 while (i<n) i = i+1 p = normal(cols(x)) p = p/sqrt(sum(p^2)) xp = x*p ind = ppftind(xp, h) inds = inds|ind pind = (1:rows(inds))~inds Code: cind = 0.*matrix(rows(pind)) cind[maxind(inds)] = 4 cind[minind(inds)] = 1 cind[1] = 2 setmaskp(pind, cind) show (d, 2, 1, pind) if (ind>imax) imax = ind xa = setmask(grdot(xp), "red") xa[,2] = -0.01-0.08.*xa[,2] fa = setmask(denxest(xp, h, "rqua", xg), "line", "red") show (d, 1, 1, zd, xa, fa, xi, fi) pmin = i endif if (ind<imin) imin = ind xi = setmask(grdot(xp), "blue") xi[,2] = -0.11-0.08*xi[,2] fi = setmask(denxest(xp, h, "rqua", xg), "line", "blue") show (d, 1, 1, zd, xa, fa, xi, fi) pmax = i endif endo endp library ("plot") library ("smoother") library ("pp") x = read ("bank2") x = transform(x, grc.prep.sphere) randomize(0) h = 2.62.*rows(x)^(-1/5) n = 50 ppexample(x, h, n) http://www.quantlet.org/mdstat/codes/mva/MVAppexample.html (2 of 3) [10/11/2004 9:58:27 AM] Applied Multivariate Statistical Analysis 22.10.2003 http://www.quantlet.org/mdstat/codes/mva/MVAppexample.html (3 of 3) [10/11/2004 9:58:27 AM] Applied Multivariate Statistical Analysis MVAsirdata Description: MVAsirdata generates a data set and applies the sliced inverse regression algorithm (SIR) for dimension reduction. Download: MVAsirdata.xpl randomize(1998) library("metrics") n=300 x=normal(n,3) e=normal(n,1) b2=#(1,-1,-1) b1=#(1,1,1) i=#(1,2,3) y=x*b1+((x*b1)^3)+4*((x*b2)^2)+e {f,g}=sir(x,y,-20) f1=(x*b1+((x*b1)^3)+4*((x*b2)^2)) m1=(x*b1)~y m2=(x*b2)~y m1=sort(m1) m2=sort(m2) sg=sum(g) g=g/sg psi=#(g[1],g[1]+g[2],g[1]+g[2]+g[3]) di=createdisplay(2,2) hh=createdisplay(1,1) kk=createdisplay(1,1) ig=i~g Code: setmaskp(ig,0,12,8) p11=x*f[,1]~y setmaskp(p11,1,2,2) p12=x*f[,1]~x*f[,2]~y setmaskp(p12,1,2,2) p21=x*f[,2]~y setmaskp(p21,1,2,2) show(di,1,1,p11) show(di,2,1,p21) show(di,1,2,p12) show(di,2,2,ig,i~psi) show(hh,1,1,m1) show(kk,1,1,m2) setgopt(hh,1,1,"title","True index vs Response","xlabel","first index","ylabel","response") http://www.quantlet.org/mdstat/codes/mva/MVAsirdata.html (1 of 2) [10/11/2004 9:58:38 AM] Applied Multivariate Statistical Analysis setgopt(kk,1,1,"title","True index vs Response","xlabel","second index","ylabel","response") setgopt(di,1,1,"title","XBeta1 vs Response","xlabel","first index","ylabel","response") setgopt(di,2,1,"title","XBeta2 vs Response","xlabel","second index","ylabel","response") setgopt(di,1,2,"title","XBeta1 XBeta2 Response") setgopt(di,2,2,"title","Scree Plot","xlabel","K","ylabel","Psi(k) Eigelvalues") 22.10.2003 http://www.quantlet.org/mdstat/codes/mva/MVAsirdata.html (2 of 2) [10/11/2004 9:58:38 AM] Applied Multivariate Statistical Analysis MVAsir2data MVAsir2data generates a data set and applies the sliced inverse regression algorithm (SIR II) for dimension Description: reduction. Download: MVAsir2data.xpl randomize(1998) library("metrics") n=300 x=normal(n,3) e=normal(n,1) b2=#(1,-1,-1) b1=#(1,1,1) i=#(1,2,3) y=x*b1+((x*b1)^3)+4*((x*b2)^2)+e {f,g}=sir2(x,y,-20) f1=(x*b1+((x*b1)^3)+4*((x*b2)^2)) m1=(x*b1)~(x*b1+((x*b1)^3)+4*((x*b2)^2)) m2=(x*b2)~(x*b1+((x*b1)^3)+4*((x*b2)^2)) m1=(x*b1)~y m2=(x*b2)~y m1=sort(m1) m2=sort(m2) sg=sum(g) g=g/sg psi=#(g[1],g[1]+g[2],g[1]+g[2]+g[3]) di=createdisplay(2,2) hh=createdisplay(1,1) kk=createdisplay(1,1) Code: ig=i~g setmaskp(ig,0,12,8) p11=x*f[,1]~y setmaskp(p11,1,2,2) p12=x*f[,1]~x*f[,2]~y setmaskp(p12,1,2,2) p21=x*f[,2]~y setmaskp(p21,1,2,2) show(di,1,1,p11) show(di,2,1,p21) show(di,1,2,p12) show(di,2,2,ig,i~psi) show(hh,1,1,m1) http://www.quantlet.org/mdstat/codes/mva/MVAsir2data.html (1 of 2) [10/11/2004 9:58:59 AM] Applied Multivariate Statistical Analysis show(kk,1,1,m2) setgopt(hh,1,1,"title","True index vs Response","xlabel","first index","ylabel","response") setgopt(kk,1,1,"title","True index vs Response","xlabel","second index","ylabel","response") setgopt(di,1,1,"title","XBeta1 vs Response","xlabel","first index","ylabel","response") setgopt(di,2,1,"title","XBeta2 vs Response","xlabel","second index","ylabel","response") setgopt(di,1,2,"title","XBeta1 XBeta2 Response") setgopt(di,2,2,"title","Scree Plot","xlabel","K","ylabel","Psi(k) Eigelvalues") 22.10.2003 http://www.quantlet.org/mdstat/codes/mva/MVAsir2data.html (2 of 2) [10/11/2004 9:58:59 AM] Applied Multivariate Statistical Analysis MVAppsib Description: Projection pursuit for the Boston housing data Download: MVAppsib.xpl proc(indmax)=ppexample(x, h, n) xg = grid(-4, 0.1, 81) zd = setmask(xg~pdfn(xg), "line", "green") p = normal(cols(x)) p = p/sqrt(sum(p^2)) xp = x*p indmin = p indmax = p imin = ppsj1ind(xp) imax = imin xi = setmask(grdot(xp), "blue") xi[,2] = -0.11-0.08*xi[,2] fi = setmask(denxest(xp, h, "rqua", xg), "line", "blue") xa = setmask(grdot(xp), "red") xa[,2] = -0.1-0.08*xa[,2] fa = setmask(denxest(xp, h, "rqua", xg), "line", "red") d = createdisplay (2,1) setfractions(d,2|1,1) show (d, 1, 1, zd, xa, fa, xi, fi) inds = 0|imax pind = (1:rows(inds))~inds cind = 2|1 setmaskp (pind, cind) show (d, 2, 1, pind)
|
Wątki
|